
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Application of Graph Theory for Similarity-Based

Player Recommendation in Career Mode EA Sports

FC

Reinsen Silitonga - 13524093

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: reinsilitonga12@gmail.com , 13524093@std.stei.itb.ac.id

Abstract— This paper presents a graph-theoretic approach for

developing a similarity-based player recommendation system in

EA Sports FC Career Mode. The system addresses the challenge

faced by managers of smaller clubs who need to identify effective,

budget-friendly players that match their tactical requirements. By

representing players as vertices and their attribute similarities as

weighted edges, a complete weighted graph is constructed using

Euclidean distance calculations. The implementation incorporates

K-Means clustering to group players with similar characteristics,

enhancing recommendation efficiency and relevance. A bipartite

graph structure is utilized to analyze player positional suitability

across various tactical roles. The system is implemented using

Python with libraries including pandas, scikit-learn, and scipy,

demonstrating effective identification of "hidden gems" - players

with similar tactical profiles to expensive alternatives but at more

affordable prices. Results show that the graph-based approach

successfully models complex player relationships and provides

actionable recommendations for strategic transfer decisions in

Career Mode.

Keywords— graph theory; player recommendation system; EA

Sports FC; similarity analysis; K-means clustering; weighted graph;

adjacency matrix; bipartite graph; Euclidean distance; career mode;

football simulation; transfer system;

EA Sports FC is a leading football simulation game offering
a realistic and intricate experience, particularly in its Career
Mode. Here, players assume the role of a club manager,
overseeing finances, team strategy, and crucial player
recruitment. The game features an extensive database of players,
each with numerous attributes (e.g., Pace, Shooting, Passing),
unique Play Styles (special abilities often optimized from real-
world data), and specific Player Roles (tactical responsibilities
within a formation). This depth, combined with an interactive
transfer system , makes manually identifying and comparing
players a complex and time-consuming task, especially with the
expanded player database that now includes women's squads[1].

Fig. 1. Cover of EA Sports FC 25. (source: https://www.playstation.com/en-

id/games/ea-sports-fc/)

A significant portion of EA Sports FC’s users enjoy the
challenge of leading smaller, less successful teams to glory. This
"road to glory" often means operating with limited transfer
budgets, making it difficult to acquire top-tier players with high
overall ratings or established reputations. Consequently,
managers frequently struggle to find effective players who fit
their tactical vision without breaking the bank.

This scenario highlights the critical need for an intelligent
player recommendation system. Such a system is designed to
help managers discover "hidden gems"—players who possess
similar key characteristics and tactical suitability to expensive,
highly-rated players, but are available at a more affordable price
point. By analyzing detailed player attributes, Play Styles, and
Player Roles, the system can identify individuals whose
combined abilities make them highly effective for specific
tactical roles, even if their overall rating isn't elite. This
empowers managers of smaller clubs to make shrewd, budget-
conscious transfers that align with their long-term vision.

To achieve this, I propose a graph-theoretical approach. In
this system, players, their attributes, Play Styles, and tactical
roles are represented as nodes (vertices). The relationships and
interactions between them become edges (links), weighted to
reflect their strength or similarity. Graph theory provides a
powerful framework to model these complex interdependencies,

mailto:reinsilitonga12@gmail.com
mailto:13524093@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

analyze patterns, and ultimately recommend players who best fit
a manager's tactical needs and budget constraints, fostering
stronger, more competitive squads. This paper details how graph
theory principles can be applied to build such a sophisticated
player recommendation system for EA Sports FC Career Mode,
enabling more informed and strategic transfer decisions.

I. THEORETICAL FOUNDATION

A. Graph

A graph G is formally defined as a pair G=(V,E), where V

is a non-empty set of vertices (also referred to as nodes or

points), and E is a set of edges (also known as links or lines)

that connect pairs of vertices. The set V={v1,v2,…,vn} must not

be empty, meaning that a graph must contain at least one vertex.

In contrast, the set E={e1,e2,…,em} can be empty, indicating

that a graph can exist without any connections between its

vertices. Based on the presence of loops or multiple edges,

graphs are generally classified into two main types:

1. Simple Graph: A graph that contains neither loops

(edges connecting a vertex to itself) nor multiple edges

(two or more edges connecting the same pair of

vertices) is called a simple graph.

2. Non-Simple Graph (Unsimple Graph): A graph that

contains multiple edges or loops is termed a non-

simple graph. Non-simple graphs can be further

categorized:

o Multigraph: A graph that contains multiple

edges between the same pair of vertices.

o Pseudograph: A graph that contains loops

(edges connecting a vertex to itself).

Fig. 2. Simple Graph (G1), Multigraph (G2), Pseudograph (G3). (source:

RinaldiMunir/Matdis)

Based on the orientation of edges, graphs are distinguished as:

1. Undirected Graph: A graph where the edges do not

have an orientation or direction. The relationship

between two connected vertices is symmetrical.

2. Directed Graph (Digraph): A graph where each edge

has a specified orientation or direction. The

relationship between two connected vertices is

asymmetrical. A directed graph can also be a Directed

Multigraph if it allows multiple directed edges

between the same ordered pair of vertices.

Fig. 3. Undirected Graph (G1), Directed Graph (G2). (source:

RinaldiMunir/Matdis)

Several Special Graphs

1. Complete Graph: A complete graph is a simple graph

in which every vertex has an edge to all other vertices.

A complete graph with n vertices is denoted by Kn.

The number of edges in a complete graph with n

vertices is n(n – 1)/2.

2. Cycle Graph: A cycle graph is a simple graph in which

every vertex has a degree of two. A cycle graph with

n vertices is denoted by Cn.

3. Regular Graph: A graph in which every vertex has the

same degree is called a regular graph. If each vertex

has a degree r, the graph is referred to as an r-regular

graph. The number of edges in a regular graph is nr/2.

4. Bipartite Graph: A graph G whose set of vertices can

be divided into two subsets V1 and V2, such that each

edge in G connects a vertex in V1 to a vertex in V2, is

called a bipartite graph and is denoted as G(V1, V2).

5. Weighted Graph: A weighted graph is a graph in

which each edge is assigned a value (weight)[2].

Fig. 4. Bipartite Graph. (source: RinaldiMunir/Matdis)

Fig. 5. Weighted and Unweighted Graph. (source: RinaldiMunir/Matdis)

In the context of this player recommendation system, a graph
is a mathematical structure comprising a non-empty set of
vertices (or nodes) and a set of edges (or links) that connect pairs
of these vertices. Vertices in our model represent various entities
such as players, their attributes, play styles, position, skills etc.
Edges define the relationships between these entities; for
instance, an edge might link a player to an attribute they possess

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

or connect two players based on their attribute similarity. These
edges can be undirected, signifying a symmetrical relationship
(e.g., mutual similarity between two players), or directed,
indicating an asymmetrical relationship (e.g., a player's assigned
primary position). Crucially, edges can be weighted, meaning
they carry a numerical value that quantifies the strength, cost, or
importance of the relationship. In our system, this weight can
represent the degree of attribute similarity (where a lower weight
implies higher similarity) or a player's "Role Familiarity" with a
specific position. Other important terms include adjacent
vertices (directly connected by an edge), the degree of a vertex
(the number of edges connected to it, indicating its connectivity),
and a path (a sequence of connected vertices and edges, essential
for understanding indirect relationships or "distances" between
players in the graph).

B. Graph Representation of Player Data

Fig. 6. Example Graph Representation of Player Data

The foundation of this recommendation system involves
transforming the extensive EA Sports FC 25 player data into a
graph structure. Specifically, each unique player within the
game's database is modeled as a distinct vertex (V) in the graph.
Accompanying each player vertex are their comprehensive
numerical attributes, which form the core data points for
similarity assessment. An edge connects two player vertices (u
and v) and quantitatively represents the similarity between their
respective attribute sets. A critical aspect of these edges is their
weight (w(u, v)), which serves to quantify this similarity. To
calculate these weights, standard statistical metrics such as
Euclidean distance or cosine similarity are employed. For
example, if Euclidean distance is selected, the weight between
two players u and v, each described by n attributes, is computed
using the formula:

𝑤(𝑢, 𝑣) = √∑ (𝑢𝑖 − 𝑣𝑖)2𝑛
𝑖=1 , (2.1)

where ui and vi denote the values of the i-th attribute for players
u and v, respectively. A crucial interpretation is that a lower edge
weight signifies a higher degree of attribute similarity, meaning
players connected by smaller weights are more alike in their
profiles. This entire process ideally culminates in the creation of
a weighted complete graph, where theoretically, every player
vertex is connected to every other player vertex. The weight of
each edge in this complete graph directly corresponds to the
calculated attribute distance, ensuring that all potential similarity
relationships across the player database are comprehensively
modeled.

C. K-Means Clustering

K-Means is a prototype-based, simple partitional clustering
algorithm that attempts to find K non-overlapping clusters.
These clusters are represented by their centroids (a cluster
centroid is typically the mean of the points in that cluster). The
clustering process of K-means is as follows. First, K initial
centroids are selected, where K is specified by the user and
indicates the desired number of clusters. Every point in the data
is then assigned to the closest centroid, and each collection of
points assigned to a centroid forms a cluster. The centroid of
each cluster is then updated based on the points assigned to that
cluster. This process is repeated until no point changes clusters.

It is beneficial to delve into the mathematics behind K-
means. Suppose D = {x1,..., xn} is the data set to be clustered.
K-means can be expressed by an objective function that depends
on the proximities of the data points to the cluster centroids as
follows:

∑ ∑ 𝜋𝑥𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑘),𝑥∈𝐶𝑘
𝐾
𝑘=1 (2.2)

where x is the weight of x, nk is the number of data objects
assigned to cluster Ck, K is the number of clusters set by the
user, and the function "dist" computes the distance between
object x and centroid mk, 1 <= k <= K. While the selection of
the distance function is optional, the squared Euclidean distance,
i.e. || x - m ||2, has been most widely used in both research and
practice. The iteration process introduced in the previous
paragraph is indeed a gradient-descent alternating optimization
method that helps to solve Eq. (2.2), although often converges
to a local minimum or a saddle point[3].

In the context of our system, K-Means is applied to the
player data, which is represented by the distances derived from
the weighted adjacency matrix. The algorithm operates by
iteratively assigning each player vertex to one of K pre-defined
clusters, where K is the number of desired clusters. This
assignment is based on minimizing the distance between the
player's attribute vector and the centroid (mean attribute vector)
of the cluster. After all players are assigned, the centroids of the
clusters are recalculated based on the new assignments. This
iterative process continues until the cluster assignments no
longer change significantly, or a specified maximum number of
iterations is reached. The primary output of this algorithm is a
set of distinct, homogeneous clusters, effectively grouping
players with highly similar statistical profiles. For example,
players might be grouped into categories like 'Fast Wingers,'
'Creative Midfielders,' or 'Ball-Playing Defenders,' based on
their intrinsic characteristics. By first categorizing players into
these clusters, the recommendation system can efficiently
narrow down the search space for similar players, thereby
enhancing the relevance and speed of the subsequent
recommendation process.

D. Bipartite Graph for Position Analysis

The concept of a bipartite graph offers a specialized and

powerful tool within our system for analyzing player suitability

across various in-game positions. A bipartite graph is a type of

graph whose vertices can be divided into two disjoint and

independent sets, U and V, such that every edge connects a

vertex in U to one in V, and no edges exist within U or within

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

V. In our specific application, one set of vertices (V1) would

exclusively represent the players, while the second, distinct set

(V2) would represent the various playable positions available

in EA Sports FC 25 (e.g., Striker (ST), Central Attacking

Midfielder (CAM), Central Midfielder (CM), Center Back

(CB), Right Back (RB), Left Wing (LW), Right Wing (RW)).

An edge connecting a player from V1 to a position from V2

would signify that the player can effectively perform in that

particular role. This structural representation allows for a clear,

intuitive visualization and systematic analysis of player

positional versatility. It goes beyond simple attribute matching

by explicitly modeling which roles a player is capable of

fulfilling, which is critical for tactical decision-making in

Career Mode. For instance, this approach can help managers

identify players who are proficient in multiple roles, thereby

adding valuable versatility and strategic depth to their squad,

especially when operating with limited budgets

Consider the following table illustrating a small example of

player positional suitability:

TABLE I. EXAMPLE PLAYER POSITIONAL SUITABILITY

Player Name

Primary

Position

Other Suitable

Positions

Kylian Mbappé ST LW, RW

Kevin De Bruyne CAM CM

Virgil van Dijk CB

Trent Alexander-

Arnold RB CM

Jude Bellingham CM CAM, CDM

E. Adjacency Matrix

Another method is to represent a graph using an adjacency

matrix, typically denoted as A. To create this matrix, start by

assigning a number to each vertex, so the set of vertices

becomes V={v1,v2,…,vn} for a graph with n vertices. The

adjacency matrix A is then an n × n matrix, where each entry is

determined based on the following rule:

𝐴𝑖𝑗 = {
1, 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (2.3)

The Adjacency Matrix (A) is the fundamental data structure
chosen for efficiently storing and accessing the intricate
similarity relationships between players in our weighted graph.
For a graph encompassing N players, an N×N matrix A is
constructed. Each element Aij within this matrix directly holds
the weight of the edge connecting player i and player j. This
weight, as established in Section B, quantifies their attribute
similarity (using Euclidean distance). Conventionally, if a player
is being compared to themselves, Aii would be 0. If no direct
relationship or a very high dissimilarity exists (though less
common in a complete similarity graph), the corresponding Aij
might be represented as infinity or a very large number. This
matrix serves as an instantaneous lookup table, allowing for

rapid retrieval of the similarity value between any given pair of
players. Its structure makes it particularly efficient for analyzing
connections across a potentially dense network of player
profiles, as it provides direct access to every pairwise
relationship, which is crucial for algorithms like shortest path
and clustering[4].

Here's an example of an Adjacency Matrix representing the
similarity relationships between a small set of hypothetical
players. Let's consider three players: Player 1, Player 2, and
Player 3. The values in this matrix represent the Euclidean
distance between their normalized attributes, where a lower
value signifies higher similarity. Using hypothetical Euclidean
distance values for these three players:

• Player 1 to Player 2: 1.5

• Player 1 to Player 3: 2.8

• Player 2 to Player 3: 0.9 (meaning Player 2 and
Player 3 are quite similar)

The 3×3 Adjacency Matrix would be:

0.0 1.5 2.8
1.5 0.0 0.9
2.8 0.9 0.0

This 3x3 matrix represents three players, with 3 rows and 3
columns corresponding to each player. The main diagonal
elements (A₁₁, A₂₂, A₃₃) are all 0.0, indicating that a player's
distance to themselves is zero. The off-diagonal elements
represent pairwise dissimilarities: A₁₂ = 1.5 shows the Euclidean
distance between Player 1 and Player 2, A₁₃ = 2.8 is the distance
between Player 1 and Player 3, and A₂₃ = 0.9 reflects the distance
between Player 2 and Player 3. The matrix is symmetric,
meaning Aᵢⱼ = Aji for example, the distance from Player 1 to
Player 2 (A₁₂) is the same as from Player 2 to Player 1 (A₂₁). This
compact structure efficiently captures all pairwise similarities
(distances) between players in the graph, providing a clear
representation of their relationships.

Fig. 7. 3x3 Adjacency Matrix Graph.

II. IMPLEMENTATION

The proposed graph-theoretic player recommendation
system for EA Sports FC 25 is implemented in Python,
leveraging key libraries such as pandas for data manipulation,

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

scikit-learn for data preprocessing and clustering, and
scipy.spatial.distance for similarity calculations. The
implementation is encapsulated within a Player Recommender
class, designed for modularity and ease of use.

A. Data Modelling as a Graph

Fig. 8. Python code for data modelling as a graph.

The initial phase of implementation involves translating the
conceptual graph structure into practical data representations
within the Python environment. Player data, typically sourced
from a CSV file, is loaded into a pandas.DataFrame. Each row
in this Data Frame inherently represents a vertex in our graph,
corresponding to an individual player. Relevant numerical
attributes, such as Pace, Shooting, Passing, Dribbling,
Defending, and Physicality, along with numerous granular

attributes (e.g., Acceleration, Vision, Composure), are extracted
to form the multi-dimensional feature vectors for each player.
To ensure fair comparisons and prevent attributes with larger
numerical ranges from dominating similarity calculations, these
raw attribute values undergo a crucial normalization step using
sklearn.preprocessing.StandardScaler. This process transforms
the data to have a mean of zero and unit variance, aligning all
attributes to a comparable scale. The player names and player
indices (a mapping from player name to their Data Frame index)
are also stored to facilitate efficient lookups and human-readable
outputs. This preprocessed and scaled attribute matrix
(self.scaled_attributes) effectively becomes the foundation upon
which the graph's vertices and their inherent properties are
defined, ready for the computation of relationships.

B. Similarity Measurement

Fig. 9. Python code for calculating similarity.

With the player attributes normalized, the next critical step

is to quantify the relationships between all pairs of players,

which form the edges of our weighted graph. The Euclidean

distance is chosen as the primary similarity metric. The

scipy.spatial.distance.pdist function is employed to efficiently

compute the pairwise Euclidean distances between all rows

(players) in the self.scaled_attributes matrix. This function

returns a condensed distance matrix, which is then converted

into a full, symmetric distance matrix using

scipy.spatial.distance.squareform. This self.distance_matrix

explicitly represents the weighted adjacency matrix of our

graph. Each entry Aij in this matrix stores the Euclidean distance

between player i and player j. A lower distance value indicates

a higher degree of similarity between the players, directly

reflecting the weight of the conceptual edge connecting them.

This pre-computation of all pairwise similarities is a

foundational step, allowing for rapid retrieval of similarity

information when generating recommendations.

C. Clustering Players

Fig. 10. Python code for clustering players.

To enhance the efficiency and relevance of
recommendations, particularly in a large player database,

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

players are grouped into homogeneous clusters based on their
attributes. The K-Means Clustering algorithm, from
sklearn.cluster, is applied to the self.scaled_attributes matrix.
The n_clusters parameter, configured during the Player
Recommender initialization (e.g., n_clusters=15), dictates the
number of distinct player groups the algorithm will form. The
random state parameter ensures reproducibility of the clustering
results across different runs. The n_init=10 parameter is also
specified to run the K-Means algorithm multiple times with
different centroid seeds and choose the best result, mitigating the
risk of converging to suboptimal local minima. After fitting the
K-Means model, each player in the original Data Frame is
assigned a Cluster label. This clustering step serves to segment
the player base into categories like 'attacking midfielders',
'defensive midfielders', 'central defenders', and 'wingers',
making the subsequent recommendation process more focused.
When a recommendation is sought for a particular player, the
system can first identify their cluster, then search for similar
players primarily within that cluster, significantly reducing the
search space and increasing the likelihood of finding tactically
relevant alternatives.

D. Recommendation System

Fig. 11. Python code for recommendation main function

The core functionality of providing player

recommendations is encapsulated in the get_recommendations

method. When a manager requests recommendations for a

player_name, the system first attempts to locate this player in

the dataset. A robust fuzzy matching mechanism using

difflib.get_close_matches is incorporated to handle minor

spelling variations or incomplete inputs, suggesting the closest

match if the exact name isn't found. Once the target player's

index (player_idx) and their assigned Cluster are identified, the

system proceeds to retrieve the pre-calculated distances from

the self.distance_matrix. Specifically,

self.distance_matrix[player_idx] yields a one-dimensional

array containing the Euclidean distances from the target player

to every other player in the dataset. This array effectively

represents the "shortest paths" (direct distances) from the target

player to all other nodes in the complete, weighted graph.

A pandas Data Frame is then constructed to consolidate

player names, their distances to the target player, and their

respective cluster assignments. The recommendation logic then

applies two crucial filters: it includes only players belonging to

the same cluster as the target player and explicitly excludes the

target player themselves from the results to avoid self-

recommendation. Finally, the filtered recommendations are

sorted in ascending order by their Distance (lower distance

indicates higher similarity), and the top k players are returned.

The output Data Frame typically includes essential information

such as 'Name', 'Distance', 'OVR', and 'Position', providing a

concise and actionable list of highly similar and tactically

relevant alternatives for the manager to consider, directly

leveraging the graph's structure to identify "hidden gems" and

budget-friendly options that fit a specific tactical need.

E. Example Output of the Recommendation System

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 12. Output of the Recommendation System

The following image displays a sample output from the

implemented Player Recommendation System, showcasing

recommendations for "Kevin De Bruyne”. This output

highlights the system's ability to identify similar players based

on attribute-based Euclidean distances and K-Means clustering,

presenting them with their name, calculated distance, Overall

Rating (OVR), and Position.

III. CONCLUSION

A. Key Findings

This research demonstrates that a weighted graph

effectively models player similarity in EA Sports FC 25. By

representing players as vertices and attribute distances as edge

weights, intricate relationships can be captured. Furthermore,

the application of clustering algorithms, such as K-Means,

successfully groups players based on their statistical attributes,

often correlating well with their primary positions and playing

styles (e.g., grouping all "Fast Wingers" together) .

B. Limitation

Despite its effectiveness, this system has certain limitations:

• Static Attributes Assumption: The current model
assumes that player attributes are static. It does not
account for the dynamic changes in player form,
development, or real-world performance that might
influence their perceived similarity or value.

• Computational Complexity: For a complete graph with
thousands of vertices (players), the computation of the
full adjacency matrix and the shortest path for every
pair can become computationally intensive .

C. Future Work

Several avenues exist for future enhancement of this

system:

• Dynamic Graphs: Integrating dynamic graph theory

concepts to model changes in player attributes over

time, incorporating form fluctuations or player

development curves .

• Graph Coloring for Scheduling: Exploring the

application of graph coloring theory to optimize match

scheduling or tournament brackets, minimizing

conflicts based on team or player availability.

ACKNOWLEDGMENT

I am grateful to Almighty God for successfully completing
the IF1220 Discrete Mathematics paper. My sincere thanks go
to Mr. Dr. Ir. Rinaldi Munir, M.T., as the class lecturer, who has
provided the necessary understanding and knowledge to
complete this paper, as well as offering various learning media
and references that were very helpful in working on this discrete
mathematics paper. Furthermore, I extend my gratitude to my
family, friends, seniors, and everyone in the academic
environment who has provided support in completing this paper.
I would also like to express special thanks to CJM, the EA Sports
FC game YouTuber, who provided me with inspiration for the
title of this paper. It is my hope that this paper will not only serve
as a mere academic assignment but also be beneficial for various
audiences and act as a motivation in the field of education. I also
hope that the discussions within this paper can continue to be
expanded and developed further. Finally, this paper is not perfect
and still has shortcomings. Regarding this, the author sincerely
apologizes for any imperfections.

REFERENCES

[1] E. Arts, "EA SPORTS FC 25 | Pitch Notes - Career Mode Deep Dive,"
EA, Aug. 07, 2024. https://www.ea.com/games/ea-sports-fc/fc-
25/news/pitch-notes-fc-25-career-mode-deep-dive (accessed Jun. 9,
2025).

[2] R. Munir, "Matematika Diskrit," Itb.ac.id, 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/matdis.htm
(accessed Jun. 10, 2025).

[3] Junjie Wu, Advances in K-means clustering: a data mining thinking.
Berlin; New York: Springer, 2012.

[4] M. Muldoon, "MATH20902 Discrete Mathematics || The University of
Manchester | School of Mathematics," Manchester.ac.uk, 2020.
https://personalpages.manchester.ac.uk/staff/mark.muldoon/Teaching/Di
screte Maths/CourseMate rials WithPodcasts.htm (accessed Jun. 20,
2025).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Reinsen Silitonga 13524093

